
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

1 Instructor: Daniel Llamocca

Unit 1 - Digital System Design

DIGITAL SYSTEM MODEL

FSM (CONTROL) + DATAPATH CIRCUIT

USE OF GENERIC COMPONENTS
▪ Among the most common components used in the development of digital systems we have registers, shift registers, and

counters. To optimize design time, it is recommended to use parameterized components (VHDL for FPGA Tutorial – Unit 5):

✓ n-bit register with enable and synchronous clear: my_rege

✓ Counter modulo-N with enable and synchronous clear: my_genpulse_sclr

✓ n-bit parallel access (right/left) register with enable and synchronous clear: my_pashiftreg_sclr

EXAMPLES

CAR LOT COUNTER

If A = 1 → No light received (car obstructing LED A)

If B = 1 → No light received (car obstructing LED B)

If car enters the lot, the following sequence (A|B) must be followed:
 00 → 10 → 11 → 01 → 00

If car leaves the lot, the following sequence (A|B) must be followed:
 00 → 01 → 11 → 10 → 00

A car might stay in a state for many cycles since the car speed is very large
compared to that of the clock frequency.

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Usually, when 𝑟𝑒𝑠𝑒𝑡𝑛 (asynchronous clear) and 𝑐𝑙𝑜𝑐𝑘 are not drawn, they are implied.

B

A

photo
receptors

FINITE STATE
MACHINE

resetn

clock

A

B

CONTROL CIRCUIT

Q
10

10-bit counter

E

ud

E

ud

DATAPATH CIRCUIT

FINITE STATE
MACHINE

resetn

clock

Inputs

Outputs

CONTROL CIRCUIT

DATAPATH CIRCUIT

https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_rege.vhd
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_genpulse_sclr.vhd
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_pashiftreg_sclr.vhd

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

2 Instructor: Daniel Llamocca

▪ Finite State Machine (FSM):

▪ Algorithmic State Machine (ASM) chart:

S1

S2

resetn=0

yes

no

00

AB=00

AB
11

S3

10

10
AB

00

S4

11
AB

10

01 11

00

S4

01
AB

00

01

E, ud  1

11
10

S6

01
AB

00

S7

11
AB

01

1011

00

S8

10
AB

00

10

E  1

11
01

01

S1 S2

00/00
resetn = 0

A|B/E|ud

01,10,11/00 S3 S4

10/00 11/00

S5

01/00

00/11

00/00

S6

01/00

11/00

10/00 11/00 01/00

01/00

00/00 10/00 11/00

10/00

00/00

S7 S8

11/00 10/00

01/00 11/00

10/0010/00

00/00

00/10

01/00 11/00

00/00 01/00

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

3 Instructor: Daniel Llamocca

DEBOUNCING CIRCUIT (VHDL CODE)
▪ Mechanical bouncing lasts approximately 20 ms. The, we have to make sure that the input signal 𝑤 is stable (‘1’) for at least

20 ms before we assert 𝑤_𝑑𝑏. Then, to deassert 𝑤_𝑑𝑏, we have to make that the 𝑤 is stable (‘0’) for at least 20 ms.

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Generic component (my_genpulse_sclr): Behavior on the clock tick:

Counter modulo-N (0 to N-1): If E=0, the count stays Getting the value of N for a given time (e.g. 20 ms.)
if E = 1 then

 if sclr = 1 then

 Q  0

 elseif Q = N-1 then

 Q  0

 else

 Q  Q+1

 end if;

end if;

* z = 1 if Q = N-1 (max. count)

If T is the period of the clock signal, then 𝑁 =
20𝑚𝑠

𝑇

For 100 MHz input clock, T = 10 ns.

Then 𝑁 =
20𝑚𝑠

10𝑛𝑠
= 2 × 106

▪ Algorithmic State Machine:

resetn

Q

clock

n

counter
0 to N-1

z

Q=N-1?

comparator

E
n

FSM

w w_db

sclr

E sclr z

w_db

w

20 ms20 ms

<20 ms <20 ms

my_genpulse_sclrS0
resetn=0

E, sclr  1

S1

E  1

S2

w

0

1

1

0
w

1

0
w

z
0

w_db  1

S3

0

1
w

1

w_db, E  1

S4

0

1
w

z
0

1

sclr  1

waits for the
first '1'

for w_db=1,
w must be 1 for
at least 20 ms

waits for the
first '0'

for w_db=0,
w must be 0 for
at least 20 ms

sclr  1

Q=2.106-1?

Q=2.106-1?

https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/debouncer.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

4 Instructor: Daniel Llamocca

BIT-COUNTING CIRCUIT (COUNTING 1’S) (VHDL CODE)
▪ This circuit counts the number of bits in register A whose value is ‘1’. Example: A = 00110111 → C = 0101.

▪ The sequential algorithm (pseudo-code) is available. In this case, we can follow this procedure to design a digital system:
✓ Sketch the block diagram: We need start and done signals to indicate when the process starts and finishes. We also

include input (Data for the Register A) and output data (Count).
✓ Sketch the high-level control mechanism (state machine) for the Bit-counting circuit. Here, you can include combinational

blocks as well as common synchronous blocks (registers, shift registers, counters).
✓ With the block diagram and high-level control mechanism, we can start including the components and their signals in

the datapath. Based on the high-level state machine, we can design the actual state machine that includes specific signals
controlling the components.

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ FSM: as a ASM chart. Example: For 𝑛 = 8: if 𝐴 = 00110110, then 𝐶 = 0100.
▪ Generic components: Behavior on the clock tick:

Counter modulo-n+1 (0 to n):

If E=0, the count stays.

n-bit Parallel access shift register:

If E=0, the output is kept
if E = 1 then

 if sclr = 1 then

 Q  0

 elseif Q = n then

 Q  0

 else

 Q  Q+1

 end if;

end if;

if E = 1 then

 if s_l = ‘1’ then

 Q  D

 else

 Q  shift in ‘din’ (to the right)
 end if;

end if;

A

din

s_l

E

0

LA

EA

Parallel Access
s_l = 1 → Load

s_l = 0 → Shift

DA

z a0

Q

counter: m bits

E

sclr

EC

FINITE STATE MACHINE
s

resetn S1

S2

resetn=0

1

0
s

z

EC, sclrC  1

01

EC  1

1

0

EA  1

a0

S3

done  1

1
s

0

C

done

𝑛

𝑛

 = 2 𝑛 1

sclrC
EA, LA  1 Shift-Right

C  0

while A  0

if a0 = 1 then

C  C + 1

end if

right shift A

end while

S1

S2

Reset

1

0
s

C  0

noy es

C  C+1

1

0

Shif t right A

a0

S3

done

1
s

0

Load A

A=0?

Sequential Algorithm

High-level FSM

Bit-counting
circuit

s

done

C

DA

https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/bit_counting.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

5 Instructor: Daniel Llamocca

Timing diagram (𝑛 = 8, = 4):

INTEGER BASE-2 LOGARITHM (VHDL CODE)
▪ This circuit computes ⌈ 2 𝐴⌉. Data (unsigned integer) is contained in register 𝐴 (n bits)

▪ The sequential algorithm (pseudo-code) is available. We follow the procedure specified in the previous example.
▪ Note that instead of performing a right shift to 𝐴 to get ⌊𝐴 2⁄ ⌋, we will get ⌊𝐴 2⁄ ⌋ by created a shifted version of 𝐴. Example

(n=4): 𝐴 = 𝑎3𝑎2𝑎1𝑎0 → ⌊𝐴 2⁄ ⌋ = 0𝑎3𝑎2𝑎1.

▪ Also asking 𝐴 = 1 is the same as asking whether ⌊𝐴 2⁄ ⌋ = 0.

clock

resetn

s

DA 0000111000110110

S1 S1 S2 S2 S2 S2 S2 S2 S2 S3 S1 S2 S2 S2 S2 S2 S3

A

z

3600 00 1B 0D 06 03 01

state

C

done

EA

LA

sclrC

EC

00 0E 07 03 0100 00 00 00

00000000 0000 0000 0001 0010 0010 0011 0100 0000 0000 0001 00100100 0100 0011 0011

L  0

while A  1

A  A - A/2

L  L + 1
end while

S1

S2

Reset

1

0
s

L  0

noy es update A

L  L + 1

S3

done

1
s

0

Load A

A=1

Sequential Algorithm

High-level FSM

Integer base-2
Logarithm

s

done

L

DA

https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/mylog2_it.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

6 Instructor: Daniel Llamocca

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ The digital system is depicted below. For 𝑛 bits, ⌈ 2 𝐴⌉ ∈ [0, 𝑛]. Thus, the result needs ⌈ 2(𝑛 1)⌉ bits.

✓ m-bit counter: If 𝐸 = 𝑠𝑐𝑙𝑟 = 1, the count is initialized to zero. If 𝐸 = 1, 𝑠𝑐𝑙𝑟 = 0, the count is increased by 1.

✓ Register: If 𝐸 = 1: 𝑠𝑐𝑙𝑟 = 1 → Clear, 𝑠𝑐𝑙𝑟 = 0 → Load.

✓ Note that 𝑧 = 1 when ⌊𝐴/2⌋ = 0 (this includes the case 𝐴 = 0).

clock

resetn

s

DA 0000110101001010

S1 S1 S2 S2 S2 S2 S2 S2 S2 S2 S3 S1 S2 S2 S2 S2 S2

A

z

4A00 00 25 13 0A 05 03

state

L

done

EA

sA

sclrL

EL

01 01 0D 07 0402 01 02 01

00000000 0000 0001 0010 0011 0100 0101 0111 0111 0000 0001 00100110 0111 0011 0100

A
E

sclr

EA

0

DA

z

Q

Counter
0 to n

E

sclr

EL

FSM

s

S1

S2

resetn=0

1

0
s

z

EL, sclrL  1

0

1

EA  1

EL  1

S3

done  1

1
s

0

L

done

𝑛

𝑛

 = 2 𝑛 1

sclrL

sA, EA  1

-

𝑛 1

0

𝑛 0an-1an-2a1

0 1

𝑛

clock

resetn

sA

sA

unsigned

subtractor EA

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

7 Instructor: Daniel Llamocca

GREATEST COMMON DIVISOR (GCD)

▪ This circuit processes two 𝑛-bit unsigned numbers (A, B) and generates the GCD of A and B. For example:

✓ If A = 216, B = 192 → GCD = 24.

✓ If A = 132, B = 72 → GCD = 12.

✓ If A = 169, B = 63 → GCD = 1.

▪ Sequential algorithm: we will use the Euclid’s GCD Algorithm:

✓ Based on this algorithm, we design an iterative circuit.

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ The figure depicts the FSM (in ASM form) and a datapath circuit for 𝑛 = 8.

Input data: DA, DB. Output data: GCD.

0 1 1 0

8

DA DB

L

Ea

+/-

GCD

=

FSM

s

done

Eb L

𝑏

+/-

Eb

8

99 9 9

8
resetn=0

1

s

S1

S2

Ea, Eb, L  1

0

1

z

Eb  1

FSM

1

done  1

s

S3

0

0

a b b a

8

EE

0 𝑏 9

𝑎 8

0 𝑎 9

9 9

8

8

next_b
AlB

next_a

8

'1' '1'

8

𝑎 𝑏

z

z

AlB

Ea

1
AlB

0

Ea  1

SA SB

next_a=SA[7..0]

next_b=SB[7..0]

AlB = SA[8]

8 8
A=B?

A<B?

A>B?

clock

resetn

AlB

s

DA

state

done

21

z

1

DB 1 2

𝑎

𝑏

0

0

0

0

216

192

24

192 168 144 120 96 72 48 24 24 24 5

1524 24 24 24 24 24 24 24 24 10 5

5 5

5

5

5

5

5

5

S1 S1 S2 S3 S1 S2 S3 S1 S1S2S2S2S2S2 S2 S2S2S2S2

a,b: unsigned integers

while a  b

if a > b

a  a-b

else

b  b-a

end

end while

return a

Sequential Algorithm

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

8 Instructor: Daniel Llamocca

LEADING ZERO DETECTOR (ITERATIVE)
▪ A sequence of N bits is fed to the circuit serially. The circuit generates the number of 0’s that exist before the first 1.

▪ Example (N=15):

✓ If the number is: 000000000000101 → Output: 12

✓ If the number is: 000000000000000 → Output: 15

✓ If the number is: 000010001000001 → Output: 4

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Inputs: X (serial data, MSB first), start.

▪ Outputs: z (leading 1 detected), done (N bits processed), and R (number of 0’s before the first 1).

▪ The process beings with the assertion of start. When the first 1 is detected, then z=1 (for 1 clock cycle) and R is frozen.

When all the bits of the sequence have been processed, done=1. We can re-start the process after this. Note that if X is just

0’s, z is never ‘1’.

▪ Counter R and Q: modulo-(N+1): count from 0 to N.

LEADING-0
DETECTOR

X R

start done

x

z

done

Q

R

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0

start

1
00 0 0 1 2 3 4 5 6 7 8 9 1
1

1
2

1
3

1
4

1
5 0 0 1 2 3 4 5 6 7 8 9

z

1
2

1
2

1
0

1
1

1
2

1
20 0 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4

1
0

1
1

1
2

1
3

1
4

1
5

𝑛 = 2 𝑁 1

𝑛

clock

resetn

Q

counter
0 to N

z

E

sclr

EQ

sclrQFSM

z

QD

E

Q

counter
0 to N

E

sclr

ER

sclrR

Q R

db

eb

x

Q

eb

db

start

done

b
b

ER  1, sclrR  1

EQ  1, sclrQ  1

eb 1, db 0

S1

1

resetn=0

start
0

done  1,

EQ  1, sclrQ  1

ER  1, sclrR  1

S3

no
Q=N-1

EQ  1

y es

start
0

S2

b x

ER  1

z  1

eb  1

db  1

EQ  1

1

0

1

1

0

𝑛 𝑛

𝑛

z

EQ

sclrQ

ER

sclrR

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

9 Instructor: Daniel Llamocca

SIMPLE PROCESSOR

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ This system is a basic Central Processing Unit (CPU). For completeness, a memory would need to be included.
▪ Here, the Control Circuit could be implemented as a State Machine. However, in order to simplify the State Machine design,

the Control Circuit is partitioned into a datapath circuit and a FSM.

OPERATION
▪ Every time w = '1', we grab the instruction from 𝑓𝑢𝑛 and execute it.

▪ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = |𝑓2|𝑓1|𝑓0|𝑅𝑦1|𝑅𝑦0|𝑅𝑥1|𝑅𝑥0|. This is called ‘machine language instruction’ or Assembly instruction:
✓ 𝑓2𝑓1𝑓0: Opcode (operation code). This is the portion that specifies the operation to be performed.

✓ 𝑅𝑥: Register where the result of the operation is stored (we also read data from 𝑅𝑥). 𝑅𝑥 can be R1, R2, R3, R4.

✓ 𝑅𝑦: Register where we only read data from. 𝑅𝑦 can be R1, R2, R3, R4.

f = f2f1f0 Operation Function

000 Load Rx, Data Rx  Data

001 Move Rx, Ry Rx  Ry

010 Add Rx, Ry Rx  Rx + Ry

011 Sub Rx, Ry Rx  Rx - Ry

100 Not Rx Rx  NOT (Rx)

101 And Rx, Ry Rx  Rx AND Ry

110 Or Rx, Ry Rx  Rx OR Ry

111 Xor Rx, Ry Rx  Rx XOR Ry

R0
E

O
_
R
0

E
_
R
0

R1
E

O
_
R
1

E
_
R
1

R2
E

O
_
R
2

E
_
R
2

R3
E

O
_
R
3

E
_
R
3

A
E

O
_
G

E
_
A

G
E

ALU

E
_
e
x
t

CONTROL CIRCUIT

Data

o
p

4

w

fun
7

done

BUS

B

E
_
G

QD
n

Data_in
n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

10 Instructor: Daniel Llamocca

▪ Control Circuit:
This is made out of some combinational units, a register, and a FSM:
✓ Ex: Every time we want to enable register 𝑅𝑥, the FSM only asserts Ex (instead of controlling E_R0, E_R1, E_R2, E_R3

directly). The decoder takes care of generating the enable signal for the corresponding register 𝑅𝑥.
✓ Eo, so: Every time we want to read from register 𝑅𝑦 (or 𝑅𝑥), the FSM only asserts Eo (instead of controlling O_R0,

O_R1, O_R2, O_R3 directly) and so (which signals whether to read from 𝑅𝑥 or 𝑅𝑦). The decoder takes care of generating

the enable signal for the corresponding register 𝑅𝑥 or 𝑅𝑦.

▪ Arithmetic-Logic Unit (ALU):

op Operation Function Unit

0000

0001

0010

0011

0100

0101

0110

0111

y <= A

y <= A + 1

y <= A - 1

y <= B

y <= B + 1

y <= B – 1

y <= A + B

y <= A – B

Transfer ‘A’

Increment ‘A’

Decrement ‘A’

Transfer ‘B’

Increment ‘B’

Decrement ‘B’

Add ‘A’ and ‘B’

Subtract ‘B’ from 'A'

Arithmetic

1000

1001

1010

1011

1100

1101

1110

1111

y <= not A

y <= not B

y <= A AND B

y <= A OR B

y <= A NAND B

y <= A NOR B

y <= A XOR B

y <= A XNOR B

Complement ‘A’

Complement ‘B’

AND

OR

NAND

NOR

XOR

XNOR

Logic

Rx1

Rx0

Ex

DECODER
with

enable

0

1

2

3

0

1

E

E_R0

E_R1

E_R2

E_R3

Ry

Eo

DECODER
with

enable

0

1

2

3

0

1

E

O_R0

O_R1

O_R2

O_R3

Rx

so

0

1

2

2
2

FSM
done

w

f
3

Ex Eo so E
_
G

O
_
G

E
_
e
x
t

o
p

4

E_fun

QD

E

7
fun

7
funq

funq = |f2|f1|f0|Ry1|Ry0|Rx1|Rx0|

E
_
A

E
_
f
u
n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

11 Instructor: Daniel Llamocca

▪ Algorithmic State Machine (ASM):
Every branch of the FSM implements an Assembly instruction.

 S1

S2

resetn=0

1

0

E_ext, Ex  1

done  1

Eo, Ex  1

done  1

000

001

Eo, so  1

E_A  1

Eo, E_G  1

op  0110

O_G, Ex  1

done  1

010

S3a

S3b

Eo, E_G  1

op  0111

O_G, Ex  1

done  1

S4a

S4b

Eo, so  1

E_A  1

E_G  1

op  1000

O_G, Ex  1

done  1

S5a

S5b

Eo, so  1

E_A  1

Eo, E_G  1

op  1010

O_G, Ex  1

done  1

S6a

S6b

Eo, so  1

E_A  1

Eo, E_G  1

op  1011

O_G, Ex  1

done  1

S7a

S7b

Eo, so  1

E_A  1

Eo, E_G  1

op  1110

O_G, Ex  1

done  1

S8a

S8b

Eo, so  1

E_A  1

w

f

E_fun  1

011 100 101

110

111

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

12 Instructor: Daniel Llamocca

BINARY TO BCD CONVERSION (VHDL CODE)

DOUBLE DABBLE ALGORITM
▪ Given an 𝑁-bit unsigned binary number, we left shift every one of the 𝑁 bits into a new register (that holds the BCD digits).

We thus have 𝑁 iterations. If after shifting, any of the BCD digits (one or more) is greater than 4, we increment it by 3. The

exception is on the last iteration, where after shifting, we do not increment any nibble.
▪ For 𝑁 bits, we need ⌈𝑁 3⁄ ⌉ BCD digits. So the BCD register is 4 × ⌈𝑁 3⁄ ⌉ bits wide.

Number of bits Binary range Number of BCD digits

4 [0-15] 2

7 [0-127] 3

10 [0-1023] 4

14 [0-16383] 5

N [0, 2𝑁 1] ⌈𝑁 3⁄ ⌉

▪ Why does it work? Think of BCD shifting: we want to shift the bits of a BCD number, but preserving the BCD representation.

If a number lower or equal than 4 is shifted, we get at most 8, still representable in BCD. If a number greater than 4 is

shifted, the minimum number we get is 10=10102, which is not in BCD. If we add 3 to the number and then shift, we will get

the proper BCD result with 2 BCD digits.

✓ Example: 5=01012. If we shift, we get 10102. 10102 would be 0001 0000 in BCD. To get this, we can add 3 to 01012, resulting

in 10002. After shifting, we get 0001 0000. The same happens for numbers 6, 7, 8, and 9.

▪ Example: 255 = 111111112 (N=8). We need ⌈𝑁 3⁄ ⌉ = 3 BCD digits. Note that there are 𝑁 = 8 iterations.

The table shows the state after an operation has been applied. In the example, only a nibble gets incremented at a time.

BCD number Binary number Procedure just applied Procedure to apply

0000 0000 0000 1111 1111 Initialization Left shift

0000 0000 0001 1111 1110 Left shift Left shift

0000 0000 0011 1111 1100 Left shift Left shift

0000 0000 0111 1111 1000 Left shift. 0111>4. Then we add 3 to 0111

0000 0000 1010 1111 1000 Add 3 to 0111 Left shift

0000 0001 0101 1111 0000 Left shift. 0101>4. Then we add 3 to 0101

0000 0001 1000 1111 0000 Add 3 to 0101 Left shift

0000 0011 0001 1110 0000 Left shift Left shift

0000 0110 0011 1100 0000 Left shift. 0110>4. Then we add 3 to 0110

0000 1001 0011 1100 0000 Add 3 to 0110 Left shift

0001 0010 0111 1000 0000 Left shift 0111>4. Then we add 3 to 0111

0001 0010 1010 1000 0000 Add 3 to 0111 Left shift

0010 0101 0101 0000 0000 Left shift. None. We do not add 3 in the last iteration

▪ Example: 172 = 10101100 (N=8). We need ⌈𝑁 3⁄ ⌉ = 3 BCD digits. Note that there are 𝑁 = 8 iterations.

The table shows the state after an operation has been applied. In general, more than a nibble can be incremented at a time.

BCD number Binary number Procedure just applied Procedure to apply

0000 0000 0000 1010 1100 Initialization Left shift

0000 0000 0001 0101 1000 Left shift Left shift

0000 0000 0010 1011 0000 Left shift Left shift

0000 0000 0101 0110 0000 Left shift 0101>4. Then we add 3 to 0101

0000 0000 1000 0110 0000 Add 3 to 0101 Left shift

0000 0001 0000 1100 0000 Left shift Left shift

0000 0010 0001 1000 0000 Left shift Left shift

0000 0100 0011 0000 0000 Left shift Left shift

0000 1000 0110 0000 0000 Left shift 1000>4, 0110>4. Then we add 3 to 1000 and 0110

0000 1011 1001 0000 0000 Add 3 to 1011 and 1001 Left shift

0001 0111 0010 0000 0000 Left shift Note. We do not add 3 in the last iteration

https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/bin2bcd.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

13 Instructor: Daniel Llamocca

DIGITAL SYSTEM (FSM + Datapath circuit)

▪ Algorithmic State Machine (ASM) Chart:

sclrB  1, EB "11..1"

E_C 1, sclr_C 1,

E_CB 1, sclr_CB 1

S1

1

resetn=0

start
0

S2

done  1

S4

yesF > 4 &
z_C=0

no

0
z_CB E_CB  1

1

LA, EA  1

E_LB  1

EB(CB)  1

start
10

EB  "11..1", EA  1

S3

E_CB  1, sclr_CB  1

0
z_C

1

E_C  1

E_C  1, sclr_C  1

LEFT SHIFT

REGISTER

w
s_L

E

clock

resetn

0
LA

EA

LEFT SHIFT

REGISTER

w
s_L

E
LB(0)
EB(0)

i_bin

N

soso
LEFT SHIFT

REGISTER

w
s_L

E
LB(1)
EB(1)

so
LEFT SHIFT

REGISTER

w
s_L

E
LB(K-1)
EB(K-1)

so ...
sclr sclr sclr pB(0)pB(1)pB(K-1) pB(2)pB(K)

sclrB

DB
4 4 4

CB

+

0
0
1
1

Q

counter
0 to N-1

z_C

E

sclr

E_C
Q

counter
0 to K-1

z_CB

E

sclr

E_C B 2 𝑁

sclr_C B

0
1
2

...
K-1

4 4 4...
0

1

K-1

 2

4F

DB

 2

sclr_C

CB

E_LB

LB(0)

LB(1)

LB(2)

LB(K-1)

DEC ODER

 = 𝑁 3⁄

FSM

E
_A

L_A

E
_LB

sclr_B

E
_C

sclr_C

E
_C

B

sclr_C
B

done

z_C
z_CB

EB

CB
F

K

start

QB(0)QB(1)QB(K-1)

...

4

o_bcd(0)o_bcd(1)...o_bcd(K-1)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

14 Instructor: Daniel Llamocca

EXTRA TOPICS

LINEAR FEEDBACK SHIFT REGISTERS (LFSRS)

▪ LFSRs have a simple and fairly regular structure. Typical components: D-type flip flops, and logic gates.
▪ Advantages: very little hardware and high speed operation.
▪ Inputs to flip flops are linear functions of the previous state.
▪ Despite the simple appearance, LFSRs are based on rather complex mathematical theory and have interesting applications

in the area of digital system testing, cryptography, and fault-tolerant computing.
▪ Typical applications: Error correction/detection, pseudo random number generators, fast counters.
▪ A generic 4-bit LFSR is depicted below:

APPLICATION: CYCLIC REDUNDANCY CHECK (CRC)
▪ This error-detection code is used in digital communications (e.g.: Ethernet, CAN), and storage devices (e.g.: RAMs).

Communication system
▪ 𝑘-bit message: 𝑀 = 𝑘−1 𝑘−2… 1 0.
▪ CRC code: 𝑅 = 𝑟𝑛−1𝑟𝑛−2…𝑟1𝑟0.
▪ Stream sent: 𝑘−1 𝑘−2… 1 0𝑟𝑛−1𝑟𝑛−2…𝑟1𝑟0

▪ Associated polynomials:

✓ 𝑀(𝑥) = 𝑘−1𝑥
𝑘−1 𝑘−2𝑥

𝑘−2 ⋯ 1𝑥
1 0𝑥

0. Order: 𝑘 1
✓ 𝑅(𝑥) = 𝑟𝑛−1𝑥

𝑛−1 𝑟𝑛−2𝑥
𝑛−2 ⋯ 𝑟1𝑥

1 𝑟0𝑥
0. Order: 𝑛 1

▪ The CRC code is calculated as a remainder: 𝑅(𝑥) = 𝑟𝑒 𝑎𝑖𝑛𝑑𝑒𝑟 (
𝑥𝑛𝑀(𝑥)

𝐺(𝑥)
)

▪ 𝐺(𝑥) = 𝑔𝑛𝑥
𝑛 𝑔𝑛−1𝑥

𝑛−1 ⋯ 𝑔1𝑥
1 𝑔0𝑥

0. This is the generating polynomial of order 𝑛. 𝐺 = 𝑔𝑛𝑔𝑛−1…𝑔1𝑔0

▪ Here, when dealing with polynomial operations, we use modulo-2 polynomial arithmetic (Galois field of two elements: GF(2)).

The coefficients of the polynomials can only be 0 or 1. The multiplication operation can be implemented as a simple AND
gate, and the addition (or subtraction) operation can be implemented by a XOR gate: 𝑎 ± 𝑏 = 𝑎𝑏, 𝑎 ∈ {0,1}.
✓ Example: 𝑥𝑛 𝑥𝑛 = 𝑥𝑛 𝑥𝑛 = 0.

▪ CRC generator: It computes 𝑅(𝑥). Its input is 𝑥𝑛𝑀(𝑥) ≡ 𝑘−1 𝑘−2… 1 000…0.

▪ CRC checker: On the receiver side, both the message and CRC code might be corrupted by the channel: 𝑀′(𝑥) and 𝑅′(𝑥).

✓ So, we must check if 𝑟𝑒 𝑎𝑖𝑛𝑑𝑒𝑟 (
𝑥𝑛𝑀′(𝑥)

𝐺(𝑥)
) = 𝑅′(𝑥). If so, we say that the system passed the CRC check.

✓ Note that this implies: 𝑥𝑛𝑀′(𝑥) = 𝑄’(𝑥)𝐺(𝑥) 𝑅’(𝑥) → 𝑥𝑛𝑀′(𝑥) 𝑅’(𝑥) = 𝑥𝑛𝑀′(𝑥) 𝑅’(𝑥) = 𝑄’(𝑥)𝐺(𝑥). In modulo-2

arithmetic, 𝑅′(𝑥) = 𝑅′(𝑥). It follows that 𝑥𝑛𝑀′(𝑥) 𝑅’(𝑥) should be divisible by 𝐺(𝑥).

✓ The CRC checker tests if 𝑟𝑒 𝑎𝑖𝑛𝑑𝑒𝑟 (
𝑥𝑛𝑀′(𝑥)+𝑅′(𝑥)

𝐺(𝑥)
) = 0. If the remainder is zero, we say that it passed the CRC check. It

is still possible for 𝑅’(𝑥) and 𝑀’(𝑥) to make the remainder equal to zero but this is far less likely.

✓ The input to the CRC checker is 𝑥𝑛𝑀′(𝑥) 𝑅′(𝑥) ≡ ′𝑘−1 ′𝑘−2… ′0𝑟′𝑛−1𝑟′𝑛−2…𝑟′0.

CRC

Generator

CRC

Checker

Transmitted bits
error

D

E

Q

resetn

Q Q

clk

Q0

E

Q1Q2

D

E

D

E

QD

E

Q3

x

LINEAR FUNCTION

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

15 Instructor: Daniel Llamocca

▪ Example: CRC-4 (𝑛 = 4): 𝑀 = 11100110, 𝐺 = 11001
𝑀(𝑥) = 𝑥7 𝑥6 𝑥5 𝑥2 𝑥
→ 𝑥𝑛𝑀(𝑥) = 𝑥4(𝑥7 𝑥6 𝑥5 𝑥2 𝑥) = 𝑥11 𝑥10 𝑥9 𝑥6 𝑥5
𝐺(𝑥) = 𝑥4 𝑥3 1
𝑅(𝑥) = 𝑥2 𝑥

CRC circuit
▪ The following LFSR implements 4-bit CRC. Components: flip flops, AND, XOR gates.
▪ Note that 𝑔4 = 1 is not used. This is because it is common in CRC to have 𝑔𝑛 = 1.

This is already considered in the design of the circuit.
▪ Example with 𝑀 = 11100110, 𝐺 = 11001:

✓ When integrated into the CRC generator, the input is given by:
𝑥𝑛𝑀(𝑥) ≡ 111001100000. The output result is 𝑅 = 0110.

✓ When integrated into the CRC checker, the input is given by:
𝑥𝑛𝑀′(𝑥) 𝑅′(𝑥) ≡ 111001100110. The result of the circuit is 𝑟𝑒 𝑎𝑖𝑛𝑑𝑒𝑟 =
0000, indicating a valid transmission.

▪ Applications: The circuit above can be implemented for any number of bits 𝑛. For

example: CRC-32 (Ethernet), CRC-15 (CAN), and CRC-1 (trivial even parity generator
with 𝐺(𝑥) = 𝑥 1).

▪ This is a serial implementation, i.e., each bit is fed to the circuit at a time. Other
implementations process some bits in parallel (for CRC-1, the parity generator in
ECE2700: Notes – Unit 1 processes all the bits at once).

▪ The design of the generating polynomial 𝐺(𝑥) is outside the scope of this class.

▪ These circuits are better implemented in hardware for high speed and low resource
utilization.

+ + +

D

E

Q

resetn

Q Q

clk

R0

E

R1 R2

D

E

D

E

QD

E

R3

x

G0 G1 G2 G3

clk

resetn

R

x

E

0000 0000 0001 0011 0111 1110 0101 1011 1110 0101 1010 1100 0000 0000 0000 0000

clk

resetn

R

x

E

0000 0000 0001 0011 0111 1110 0101 1011 1110 0101 0110 0110 01101010 1101 0011

D

E

Q

resetn

clk

R0

E

x

G0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

16 Instructor: Daniel Llamocca

MODULO-N COUNTER DESIGN
▪ A modulo-N counter could be designed by the State Machine method, but this can be very cumbersome if N is a large

number. For example, if N=1000, we need 1000 states.
▪ The figure shows a counter modulo-200 that uses a register, and adder, a comparator, and logic gates. 𝑄: count. 𝑧: output

signal asserted only when the maximum count (199) is reached. This can be easily described in VHDL using the structural
description. You can also use the behavioral description, where the count is increased by 1 every clock cycle and ‘z’ is
asserted when the count reaches ‘N-1’.

MEMORY DECODING

▪ Physical implementation of memory is not homogeneous:
✓ Different portions of memory are used for different purposes: RAM, ROM, I/O devices.
✓ A processor can usually address a memory space that is much larger than the memory space covered by an individual

memory chip. Even if all the memory was of one type, we still have to implement it using multiple ICs.
✓ For a given valid address, one and only one memory-mapped component must be accessed.

▪ Address Decoding: Process of generating chip select (CS, CE) signals from the address bus for each device in the system.
▪ The Address bus line (N+M bits) is split into two sections:

✓ The N most significant bits are used to generate the CS signals for the different devices.
✓ The M least significant bits are passed to the devices as addresses.

EXAMPLE
▪ A 20-bit address line in a processor handles up to 220 = 1 𝑀𝐵 of addresses, each address containing one-byte of

information. We want to connect four 256KB memory chips to the processor.

▪ The 2 MSBs of the address line are used to generate the CS signals. The 18 LSBs are passed to the devices as addresses.
▪ The pink-shaded circuit: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when

the address falls in the corresponding range. Example: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 0𝑥 𝐹𝐹𝐹𝐹, → only memory chip 2 is enabled (CE=1).

If 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 0𝑥𝐷0123, → only memory chip 4 is enabled.

+

00000001

E

sclr

4

8

resetn

E

sclr

Q

sclr: synchronous clear
If E=sclr=1, then Q = 0

8 8

clock

A=B

= 199?

a7

b7

a6

b6

a5

b5

a4

b4

A

11000111

8
B

A=B

z

a3

b3

a2

b2

a1

b1

a0

b0

00000

3FFFF

40000

7FFFF

80000

BFFFF

C0000

FFFFF

...
...

...
...256KB

256KB

256KB

256KB

256 KB

CE

256 KB

CE

256 KB

CE

256 KB

CE

Memory

space

20address

18 18 18 18

Memory

devices

1 2 3 4
1

2

3

4

w0
w1

y0
y1
y2
y3

address(17..0)

address(18)

address(19)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

17 Instructor: Daniel Llamocca

FLIP FLOPS: PRACTICAL ASPECTS

Reducing rate of change of a synchronous circuit:
▪ Here, we use FSM as an example of a synchronous circuit. But we can apply this technique to any synchronous circuit.
▪ We usually would like to reduce the rate at which FSM transitions occur. A straightforward option is to reduce the frequency

of the input clock. But this is a very complicated problem when a high precision clock is required.
▪ Alternatively, we can reduce the rate at which FSM transitions occur by including an enable signal in our FSM: this means

including an enable to every flip flop in the FSM. For any FSM transition to occur, the enable signal has to be ‘1’. Then we
assert the enable signal only when we need it. The effect is the same as reducing the frequency of the input clock.
✓ The figure below depicts a counter modulo-N (from 0 to N-1) connected to a comparator that generates a pulse (output

signal 𝑧) of one clock period every time we hit the count ‘N-1’. The number of bits the counter is given by 𝑛 = ⌈ 2𝑁⌉.
The effect is the same as reducing the frequency of the FSM to 𝑓 𝑁⁄ , where 𝑓 is the frequency of the clock.

✓ Example: Timing diagram of a modulo-10 counter. Notice that ‘z’ is only asserted when the count reaches “1001”. This

‘z’ signal controls the enable of a FSM, so that the FSM transitions only occur every 10 clock cycles, thereby having the
same effect as reducing the frequency by 10.

▪ We can apply the same technique not only to FSMs, but also to any sequential circuit. This way, we can reduce the rate of

any sequential circuit (e.g. another counter) by including an enable signal of every flip flop in the circuit.

Flip flop timing parameters:
▪ Propagation Delay.
▪ Setup Time: Interval of time before the

clock edge where the data must be
held stable.

▪ Hold Time: Interval of time after the
clock where the data must be held
stable.

▪ If setup time or hold time are violated,
the output may become unpredictable,
or even worse it might enter into
metastability.

clk

resetn

Q 0000

z

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 0000 0001

E

resetn

Q

clock

n

counter
0 to N-1

z

FSM
Outputs

Inputs

Q=N-1?

comparator

EE

D Q

resetn

clk

QD

clk

Q

D

restricted

region

	Digital System Model
	FSM (Control) + Datapath Circuit
	Use of Generic components

	Examples
	Car Lot Counter
	Debouncing Circuit (VHDL code)
	Bit-Counting circuit (Counting 1’s) (VHDL code)
	Integer Base-2 Logarithm (VHDL code)
	Greatest Common Divisor (GCD)
	Leading Zero Detector (Iterative)
	Simple Processor
	Binary to BCD Conversion (VHDL code)

	Extra Topics
	Linear Feedback Shift Registers (LFSRs)
	Modulo-N Counter Design
	Memory Decoding
	Flip Flops: Practical Aspects

